Category Archives: Smart Fabric

Tony Chahine on human presence, reimagined | ApplySci @ Stanford

FacebooktwitterlinkedinFacebooktwitterlinkedin

Myant‘s Tony Chahine reimagined human presence at ApplySci’s recent Wearable Tech + Digital Health + Neurotech conference at Stanford:


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson

REGISTRATION RATES INCREASE JUNE 29TH

Smart socks sense pain, pressure in diabetic neuropathy

FacebooktwitterlinkedinFacebooktwitterlinkedin

SenseGo smart socks have multiple sensors that monitor  pressure from poor posture, over-exertion, or ill-fitting shoes, all which could lead to diabetic foot ulcers.  Pressure points are registered as electrical signals, and relayed to an app which  informs the patient of a developing risk.

The washable sensor socks, developed by Hebrew University professor Yaakov Nahmias, can compensate for damaged nerve sensations,  providing patients with data on pain that they are unable to feel.  Failure to treat these issues could  lead to foot ulcers, sores, or wounds that do not heal, hence the benefit of this “early warning” system.


Wearable Tech + Digital Health San Francisco – April 5, 2016 @ the Mission Bay Conference Center

NeuroTech San Francisco – April 6, 2016 @ the Mission Bay Conference Center

Wearable Tech + Digital Health NYC – June 7, 2016 @ the New York Academy of Sciences

NeuroTech NYC – June 8, 2016 @ the New York Academy of Sciences

 

Sensor shorts provide real time runner feedback

FacebooktwitterlinkedinFacebooktwitterlinkedin

ApplySci has described several examples of smart shirts and smart fabrics in recent months.  Now, Lumo his integrated sensors into shorts to monitor  cadence, stride length, pace, distance and pelvic rotation in runners.  Placed inside the waistband, the sensors sync with smartphones to provide real time feedback, and the app sends data and coaching content post-run.

WEARABLE TECH + DIGITAL HEALTH SAN FRANCISCO – APRIL 5, 2016 @ MISSION BAY CONFERENCE CENTER

NEUROTECH SAN FRANCISCO – APRIL 6, 2016 @ MISSION BAY CONFERENCE CENTER

Smart shirt monitors posture, sends correcting alerts

FacebooktwitterlinkedinFacebooktwitterlinkedin

TruPosture is a smart shirt with embedded nanosensors that continuously measure the curvature of one’s spine.  It is being crowdfunded on indiegogo.

The wearer, and a physical therapist, set a personalized posture goal.  When the spine diverges, vibrations  are sent as posture reminders. One vibration burst happens when a wearer is leaning too far forward, and two bursts happen when he/she leans too far back.

Posture performance is tracked over time through an app.  The data can be shared with doctors or therapists, or integrated with fitness wearables.

Ralph Lauren’s health sensing smart shirt

FacebooktwitterlinkedinFacebooktwitterlinkedin

PoloTech, Ralph Lauren and OMsignal‘s smart shirts, will be available for sale this week.  Like the partnership between Intel and Opening Ceremony, this represents the fashion mainstreaming of wearable technology.

The shirt has embedded silver fibers to track heart rate, heart variability, breathing depth and recovery, intensity of movement, energy output, stress levels, steps taken, and calories burned. One must also wear a “black box” device to receive the sensor data and to capture activity information.

The data is then transmitted to an iOS app, which offers cardio, agility and strength workouts, live fitness monitoring, and exertion and effort ratings.  The sensor data adapts the app’s workouts to the wearer’s performance in real time.

Accurate, self powered health monitoring technologies

FacebooktwitterlinkedinFacebooktwitterlinkedin

The NSF‘s  ASSIST center, based at NC State, is using nanotechnology to build clinically accurate, self-powered health monitoring technologies.

The team, led by Veena Misra,  is developing tiny devices harvesting energy from body heat (which creates thermal energy) and body motion (which creates mechanical energy).  They can be used on various areas of the body.

Examples include:

  • a piezoelectric-coated film, on nickel foil, encapsulated in kapton tape, that harvests energy from elbow movement
  • a flexible wristband made of polymers integrated with a TEG, low-power chips, and a low-power radio.
  • a wireless wrist platform that measures arterial blood pressure and blood oxygen saturation, and can track airborne pollutants.
  • small, wearable sensors that monitor a person’s immediate environment and vital signs to understand asthma triggers.

The optimal sensor position is a  person’s pulse points, where blood vessels are close to the skin’s surface. Textiles are ideal for measurements, because they conform to the body and provide the thermal insulation to maintain a temperature difference.  The researchers are trying to interconnect  electronics from multiple garment locations so that they can communicate with each other.

ApplySci believes that a continuous power source is key to the effectiveness of wearable health sensors.  ASSIST, IMEC/Holst, the University of Virginia, and others, seem to be providing the basis for this.

Video – The Health Care Monitoring System of the Future.

Google’s conductive fabric for everyday wear

FacebooktwitterlinkedinFacebooktwitterlinkedin

Google’s Project Jacquard creates conductive fabrics that can be woven into every day clothes.  The yarn is tough enough for industrial weaving, and can connect to chips that react to gestures, and monitor heart rate or body temperature.

This seamless integration of sensors into clothing can make health monitoring ubiquitous.

In a demo at the company’s I/O conference, the fabric turned on lights, controlled a media player, and powered two touch-tracking to visualize the interaction. Low-power wifi  was used to communicate with devices.

WEARABLE TECH + DIGITAL HEALTH NYC 2015 – JUNE 30, 2015 @ NEW YORK ACADEMY OF SCIENCES.  REGISTER HERE.  PREFERRED RATE ENDS TOMORROW.

Sensor sweater guides senior rehabilitation

FacebooktwitterlinkedinFacebooktwitterlinkedin

Vigour, by Pauline van Dongen,  is a sensor sweater developed for geriatric rehabilitation.  The knitted cardigan, with integrated stretch sensors, discreetly and continuously monitors upper body movement.  Two sensors monitor  lower back movement, and one under each arm monitors shoulder and arm movement. Data is transferred to the user, caregiver, or physician.  It can be worn all day, during normal activity, rest, and exercise.  Its app provides visual and auditory feedback, in real time, to inform and motivate the user.

WEARABLE TECH + DIGITAL HEALTH NYC 2015 – JUNE 30 @ NEW YORK ACADEMY OF SCIENCES.  FINAL REGISTRATION DISCOUNT ENDS 6/2.

Sensor scarf heats, vibrates, can monitor vital signs

FacebooktwitterlinkedinFacebooktwitterlinkedin

Microsoft‘s SWARM prototype smart scarf, developed with University of Maryland‘s Michele Williams,  heats, which could help those with physical or mental disabilities stay warm.  It also vibrates.  The plan is to  incorporates biometric sensors that can cause vibrations when an issue is detected with  heart, breathing rate, or skin temperature data.

The flexible laser-cut scarf has interchangeable heat and vibration producing modules, linked with metal snaps.  It is  made of industrial felt and conductive copper taffeta.

Why this project is in a very early stage, ApplySci believes that it is indicative of the forthcoming wave of multi-purpose wearables.

Wearable Tech + Digital Health NYC 2015 – June 30 @ New York Academy of Sciences