Category Archives: Eyes

Eye implant measures pressure, releases fluid, in glaucoma

FacebooktwitterlinkedinFacebooktwitterlinkedin

Caltech’s Azita Emami, Aubrey Shapero, Abhinav Agarwal and colleagues have developed a miniaturized, fully wireless, highly-sensitive, implantable, continuous pressure sensor that can remain in the human eye for four years.  The goal is early detection and treatment of glaucoma progression.

Current tonometer measurement, which requires anesthesia, only measures pressure during an appointment, and can miss many daily pressure fluctuations.

The device is implanted on the white of the eye and does not interfere with vision. It consists of a pressure sensor, control circuitry, and an antenna. With no battery, it small and long lasting. Radio waves from a handheld scanner are received by the antenna and generate a small voltage that temporarily powers the device, which then takes a pressure reading and sends the signal back to the reader, using the same antenna.

Encapsulation with liquid silicone and a polymer called parylene allowed the researchers to overcome the impact of fluid corrosion and tissue growth.  This is what enables the implant to remain in the eye much longer than previous devices.

A valve could also be added to release small amounts of fluid as tears, when pressure rises too high, creating a closed-loop glaucoma management system.


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson

REGISTRATION RATES INCREASE JULY 6th

Proof of concept 3D printed cornea

FacebooktwitterlinkedinFacebooktwitterlinkedin

Newcastle University’s Che Connon has developed proof-of-concept research that could lead to a 3D printed cornea.

Stem cells  from a healthy donor cornea were mixed with alginate and collagen to create a printable bio-ink.  A 3D printer extruded the bio-ink in  concentric circles to form the shape of a human cornea in less then 10 minutes. The stem cells then grew.

According to Connon: “Our unique gel – a combination of alginate and collagen – keeps the stem cells alive whilst producing a material which is stiff enough to hold its shape but soft enough to be squeezed out the nozzle of a 3D printer. This builds upon our previous work in which we kept cells alive for weeks at room temperature within a similar hydrogel. Now we have a ready to use bio-ink containing stem cells allowing users to start printing tissues without having to worry about growing the cells separately.”

The team demonstrated that they could build a cornea to match a patient’s unique specifications, but said that it will be several years before this might be used for transplants.

Click to view Newcastle University video


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson

REGISTRATION RATES INCREASE FRIDAY, JUNE 22nd

Fractal-shaped electrodes could improve retinal implants

FacebooktwitterlinkedinFacebooktwitterlinkedin

William Watterson and Richard Taylor an the  University of Oregon are in the early stages of developing fractal-shaped electrodes for use as retinal implants to restore sight.  They believe that the square shape of previous generations of electrodes prevented their success.  (86 per cent fail.) The fractal shape mimics the design of the neurons they interact with.

In simulations, the fractal design stimulated 90 per cent more neurons in the retina, while using less voltage than a traditional implant.

The team is working on shrinking the implants before they are tested on mice — therefore the possibility of human use is far off and not guaranteed — but the concept is promising.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab – featuring  Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Michael Weintraub – Nancy Brown – Steve Kraus – Bill Geary – Mary Lou Jepsen – Daniela Rus

Registration rates increase Friday, July 28th.


ANNOUNCING WEARABLE TECH + DIGITAL HEALTH + NEUROTECH SILICON VALLEY – FEBRUARY 26 -27, 2018 @ STANFORD UNIVERSITY

Direct brain path for sight, sound via implanted microscope

FacebooktwitterlinkedinFacebooktwitterlinkedin

Rice University’s Jacob Robinson, with Yale and Columbia colleagues, are developing FlatScope — a flat, brain implanted microscope that monitors and triggers neurons which are modified to be fluorescent when active.

While capturing greater detail than current brain probes, the microscope also goes through deep levels that illustrate  sensory input processing — which they hope to be able to control.

Aiming to produce a super high-resolution neural interface, FlatScope is a part of  DARPA’s NESD program, founded by Phillip Alvelda, and now led by Brad Ringeisen.


Phillip Alvelda will be a featured speaker at ApplySci’s Wearable Tech + Digital Health + NeuroTech Boston conference on September 19, 2017 at the MIT Media Lab.  Other speakers include:  Joi Ito – Ed Boyden – Roz Picard – George Church – Nathan Intrator –  Tom Insel – John Rogers – Jamshid Ghajar  – Michael Weintraub – Nancy Brown – Steve Kraus – Bill Geary – Mary Lou Jepsen – Daniela Rus

Registration rates increase Friday, July 21st

Less invasive, soft tissue artificial retina

FacebooktwitterlinkedinFacebooktwitterlinkedin

Oxford University student Vanessa Restrepo-Schild is developing a synthetic, soft tissue retina that more closely resembles human tissue than current artificial retina technology.

Unlike existing implants, the cell-cultures are created from natural, biodegradable materials and do not contain foreign bodies or living entities. This makes the implant less invasive than a mechanical device, and less likely to have an adverse reaction on the body.

The technology has only been tested in a lab, therefore its usefulness with living tissues is unknown.  If successful, this could be a breakthrough for the visually impaired.

The retina replica consists of soft water droplets  and biological cell membrane proteins. Designed like a camera, the cells act as pixels, detecting and reacting to light to create a grey scale image. The synthetic material can generate electrical signals, which stimulate the neurons at the back of our eye, similar to an original retina.


Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

 

Transparent, stretchable lens sensor for diabetes, glaucoma detection

FacebooktwitterlinkedinFacebooktwitterlinkedin
UNIST professors Jang-Ung Park, Chang Young Lee and Franklin Bien, and KNU professors Hong Kyun Kim and Kwi-Hyun Bae, have developed a contact lens sensor to monitor biomarkers for intraocular pressure, diabetes mellitus, and other health conditions. Several attempts have been  made to monitor diabetes via glucose in tears.  The challenge has been poor wearability, as the electrodes used in existing smart contact lenses are opaque, obscuring  one’s view.  Many wearers also complained of significant discomfort from the lens-shaped firm plastic material. The research team addressed this by developing a sensor based on transparent, stretchable, flexible materials  graphene sheets and metal nanowires. This allowed the creation of lenses comfortable and accurate enough for eventual self-monitoring of glucose levels and eye pressure. Patients can transmit their health information through an embedded wireless antenna in the leans, allowing real-time monitoring  The system uses  the wireless antenna to read sensor information, eliminating the need for a separate power source.

Join ApplySci at Wearable Tech + Digital Health + NeuroTech Boston on September 19, 2017 at the MIT Media Lab. Featuring Joi Ito – Ed Boyden – Roz Picard – George Church – Tom Insel – John Rogers – Jamshid Ghajar – Phillip Alvelda – Nathan Intrator

Diabetic retinopathy-detecting algorithm for remote diagnosis

FacebooktwitterlinkedinFacebooktwitterlinkedin

Google has developed an algorithm which it claims is capable of detecting diabetic retinopathy in photographs.  The goal is to improve the quality and availability of screening for, and early detection of,  the common and debilitating condition.

Typically, highly trained specialists are required to examine photos, to detect the lesions that indicate bleeding and fluid leakage in the eye. This obviously makes screening difficult in poor and remote locations.

Google developed a dataset of 128,000 images, each evaluated by 3-7 specially-trained doctors, which trained  a neural network to detect referable diabetic retinopathy.  Performance was tested on two clinical validation sets of 12,000 images. The majority decision of a panel 7 or 8 ophthalmologists served as the reference standard. The results showed that the accuracy of the  Google  algorithm was equal to that of the physicians.


ApplySci’s 6th   Wearable Tech + Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Krishna Shenoy – Karl Deisseroth – Shahin Farshchi – Casper de Clercq – Mary Lou Jepsen – Vivek Wadhwa – Dirk Schapeler – Miguel Nicolelis

Fully transparent, glucose monitoring contact lens

FacebooktwitterlinkedinFacebooktwitterlinkedin

Oregon State’s Greg Herman has developed a transparent sensor to monitor glucose (via tears) in a contact lens.  The device could also be used to control insulin infusions, by transmitting real-time data to a pump.

Similar technology has been developed by Google, although their lens is not (currently) fully transparent, and Noviosense, which requires a user to insert a device in the lower lid.

Herman believes that the lens sensor could also be used to monitor stress hormones, uric acid, and  ocular pressure in glaucoma.


ApplySci’s 6th   Wearable Tech + Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Mary Lou Jepsen – Vivek Wadhwa – Miguel Nicolelis – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Krishna Shenoy – Karl Deisseroth

Eye tracking + VR to improve brain injury diagnosis, track recovery

FacebooktwitterlinkedinFacebooktwitterlinkedin

Eye tracking technology, combined with VR, is proliferating, with myriad medical, gaming, and education applications.

SyncThink uses eye tracking, built into an Oculus Rift,  to detect if a person has the ability to keep

the eyes synced with moving objects, to determine brain injury and track recovery.

The company has been granted 10 patents, for  eye-tracking hardware, and analytical techniques for stimulating, measuring, and training brain attention networks. It has been used to detect concussions on the field and evaluate soldier readiness and brain impairment after injury. The company describes additional applications including characterizing and monitoring fatigue, performance, and developmental or neurodegenerative conditions.

Eyefluence, which was today acquired by Google, creates head-mounted display AR, VR, and mixed reality interfaces. According to the company,  its AR application allows critical care professionals to access patient data with their eyes while their hands treat the injured.  VR integrations humanize experiences, reduce nausea, optimize image resolution, and increase speed.

ApplySci believes that the next step in AR/VR enhancement is integrating mobile EEG into headsets, combining eye tracking, GSR, and  brainwave data into various applications.


ApplySci’s 6th   Wearable Tech + Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Mary Lou Jepsen – Vivek Wadhwa – Miguel Nicolelis – Roozbeh Ghaffari –Tarun Wadhwa – Eythor Bender – Unity Stoakes – Mounir Zok – Krishna Shenoy – Karl Deisseroth