Medical device data shared via ultrasound, real-time treatment enabled

http://www.buffalo.edu/news/releases/2013/05/0570.html

Navy sonar technology is being miniaturized by University at Buffalo professor Tommaso Melodia to be applied inside the human body to treat diseases like diabetes and heart failure in real time.

A network of wireless body sensors that use ultrasounds could be used to wirelessly share information between medical devices implanted in or worn by diabetic/heart failure patients.

Previously, researchers focused on linking sensors together via electromagnetic radio frequency waves – the same type used in cellular phones, GPS and wireless devices. Radio waves can be effective, but they generate heat and require large amounts of energy to propagate through skin, muscle and tissue.  Ultrasound may be a more efficient way to share information as 65 percent of the body is composed of water.  This suggests that medical devices, such as a pacemaker and a blood oxygen level monitor, could communicate more effectively via ultrasounds compared to radio waves.

Melodia highlights the technology’s use in diabetes patients, where wireless blood glucose sensors could be connected to implantable insulin pumps. The sensors would monitor the blood and, via the pumps, control the dosage of insulin as needed in real time.

Flexible “skin” heart monitor

Stanford professor Zhenan Bao has developed a flexible, skin-like heart monitor, worn under an adhesive bandage on the wrist.  This non-invasive method could replace intravascular catheters, which create a high risk of infection, making them impractical for newborns and high-risk patients.  An external monitor could give doctors a safer way to gather information about the heart, especially during infant surgeries.  Bao’s team is working with other Stanford researchers to make the device completely wireless.

Medical monitoring via webcam

http://www.economist.com/blogs/babbage/2013/03/remote-monitoring

A team of researchers at Xerox is working on technology that would allow doctors to obtain patients’ vital signs using a simple webcam. Already, the team is testing use of the technology to monitor the pulse rate of premature babies and to track irregular heartbeats in patients suffering from arrhythmia.

By applying further signal-processing algorithms to the images, doctors can get a read-out of a baby’s blood-oxygen level. If the camera can see more than one part of the child it can also measure that child’s blood pressure. It does this by recording the time each pulse caused by the heartbeat takes to arrive in different arteries.

Fujitsu facial imaging technology measures pulse

http://www.sys-con.com/node/2582171

A Fujitsu research lab has developed software that can accurately measure a subject’s pulse using the small digital cameras attached to smartphones and tablets.

The technology is based on the fact that the brightness of an individual’s face changes slightly as their heart beats, due to their blood flow. Hemoglobin, which carries oxygen around the body, absorbs green light, so analyzing the change in color of parts of the face reveals their heart rate.

As most image sensors capture pixel information in red, blue and green, they have the ability to detect hemoglobin built in. Fujitsu’s technology keeps track of specific regions of the face over time to take pulse measurements.

A move toward aggregating health data from various devices and apps

http://gigaom.com/2013/03/15/tictrac-emerges-to-help-make-health-tracking-more-mainstream/

It seems that every day a new app or device promising the ultimate in health or fitness monitoring enters the market.  A startup has created a personal analytics dashboard which gives people a big picture view of their own aggregated data and underlying patterns, helping them make sense of the numbers.

Doctors use smartphones to save lives

http://appleinsider.com/articles/13/01/25/doctors-see-apples-iphone-as-life-saver-in-the-future-of-medicine

A doctor recently used his iPhone, in combination with AliveCor, a mounted sensor capable of delivering clinically accurate electrocardiograms, while in flight, to measure the vital signs of a passenger experiencing severe chest pains at 30,000 feet.

The results indicated that the passenger was having a heart attack.  The doctor recommended an urgent landing, and the passenger survived after being rushed to the hospitall

NASA technology benefits cardio-pulmonary patients

http://www.azosensors.com/news.aspx?newsID=5350

PUMA measures six components to evaluate metabolic function: oxygen and carbon dioxide partial pressure, volume flow rate, heart rate, and gas pressure and temperature. From those measurements, PUMA can compute the oxygen uptake, carbon dioxide output and minute ventilation (average expired gas flow rate). A small, embedded computer takes readings of each sensor and relays the data wirelessly to a remote computer via Bluetooth.