AI predicts response to antipsychotic drugs, could distinguish between disorders

Lawson Health Research Institute, Mind Research Network and Brainnetome Center researchers have developed an algorithm that analyzes brain scans to classify illness in patients with complex mood disorders and help predict their response to medication.

A recent study analyzed and compared fMRI scans of those with MDD, bipolar I,  and no history of mental illness, and found that each group’s brain networks differed, including regions in the default mode network and thalamus.

When tested against participants with a known MDD or Bipolar I diagnosis, the algorithm correctly classified illness with 92.4 per cent accuracy.

The team also imaged the brains of 12 complex mood disorder patients with out a clear diagnosis, to predict diagnosis and examine medication response.

The researchers hypothesized that participants classified by the algorithm as having MDD would respond to antidepressants while those classified as having bipolar I would respond to mood stabilizers. When tested with the complex patients, 11 out of 12 responded to the medication predicted by the algorithm.

According to lead researcher Elizabeth Osuch:: “This study takes a major step towards finding a biomarker of medication response in emerging adults with complex mood disorders. It also suggests that we may one day have an objective measure of psychiatric illness through brain imaging that would make diagnosis faster, more effective and more consistent across health care providers.”


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson – Ed Simcox – Sean Lane

AI speeds MRI scans

Facebook and NYU’s fastMRI project, led by Larry Zitnick, uses AI in an attempt to make MRI imaging 10 times faster. Neural networks will be trained to fill in missing or degraded parts of scans, turning them from low resolution into high. The goal is to significantly reduce the time patients must lie motionless inside an MRI machine.


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson – Ed Simcox – Sean Lane

AI – optimized glioblastoma chemotherapy

Pratik Shah, Gregory Yauney,  and MIT Media Lab researchers have developed an AI  model that could make glioblastoma chemotherapy regimens less toxic but still effective. It analyzes current regimens and iteratively adjusts doses to optimize treatment with the lowest possible potency and frequency toreduce tumor sizes.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of the doses It often skipped administration, which were then scheduled twice a year instead of monthly.

Reinforced learning was used to teach the model to favor certain behavior that lead to a desired outcome.  A combination of  temozolomide and procarbazine, lomustine, and vincristine, administered over weeks or months, were studied.

As the model explored the regimen, at each planned dosing interval it decided on actions. It either initiated or withheld a dose. If it administered, it then decided if the entire dose, or a portion, was necessary. It pinged another clinical model with each action to see if the the mean tumor diameter shrunk.

When full doses were given, the model was penalized, so it instead chose fewer, smaller doses. According to Shah, harmful actions were reduced to get to the desired outcome.

The J Crain Venter Institute’s Nicholas Schork said that the model offers a major improvement over the conventional “eye-balling” method of administering doses, observing how patients respond, and adjusting accordingly.


Join ApplySci at the 9th Wearable Tech + Digital Health + Neurotech Boston conference on September 24, 2018 at the MIT Media Lab.  Speakers include:  Rudy Tanzi – Mary Lou Jepsen – George ChurchRoz PicardNathan IntratorKeith JohnsonJuan EnriquezJohn MattisonRoozbeh GhaffariPoppy Crum – Phillip Alvelda Marom Bikson – Ed Simcox – Sean Lane