Robotic hand exoskeleton for stroke patients


ETH professor Roger Gassert has developed a robotic exoskeleton that allows stroke patients  to perform daily activities by supporting motor and somatosensory functions.

His vision is that “instead of performing exercises in an abstract situation at the clinic, patients will be able to integrate them into their daily life at home, supported by a robot.” He observes that existing exoskeletons are heavy, rendering patients unable to lift their hands. They also have difficulty feeling objects and exerting the right amount of force. To address this, the palm of the hand is left free in the new device.

Gassert’s Kyushu University colleague Jumpei Arata developed a mechanism for the finger featuring three overlapping leaf springs. A motor moves the middle spring, which transmits the force to the different segments of the finger through the other two springs. The fingers thus automatically adapt to the shape of the object the patient wants to grasp.

To reduce the weight of the exoskeleton, motors are placed on the patient’s back and  force is transmitted using a bicycle brake cable. ApplySci hopes that the size and weight of the motor can be reduced, allowing it to be integrated into the exoskeleton in its next phase.

Gassert wants to make the exoskeleton thought controlled, and is using MRI and EEG to detect, in the brain,  a patient’s intention to move his or her hand, and communicating this to the device.

ApplySci’s 6th   Wearable Tech + Digital Health + NeuroTech Silicon Valley  –  February 7-8 2017 @ Stanford   |   Featuring:   Vinod Khosla – Tom Insel – Zhenan Bao – Phillip Alvelda – Nathan Intrator – John Rogers – Mary Lou Jepsen – Vivek Wadhwa – Miguel Nicolelis – Roozbeh Ghaffari – Unity Stoakes – Mounir Zok – Krishna Shenoy