Brain stimulation treatments can alter neural circuits electrically instead of chemically. However, understanding what brain regions should be targeted, by condition, remains a challenge, particularly in non-invasive rTMS. A Beth Israel Deaconess study suggests that brain networks – the interconnected pathways that link brain circuits to one another– can help guide site selection for brain stimulation therapies.
According to author Michael Fox, “Although different types of brain stimulation are currently applied in different locations, we found that the targets used to treat the same disease are nodes in the same connected brain network.”
Brain stimulation treatment data for 14 conditions, including addiction, Alzheimer’s, depression, dystonia, epilepsy, essential tremor, Huntington’s, and Parkinson’s were studied. The researchers listed the stimulation sites, deep in the brain and near the surface, thought to be effective for the treatment of each disease.
Through a data set of fMRI images of people’s brains at rest, the team found correlated fluctuations in spontaneous brain activity, illustrating which sites were functionally connected. A map of connections from deep brain stimulation sites to the surface of the brain was created. When the research team compared the map to sites on the brain surface that work for noninvasive brain stimulation, the two matched.